

Objective-Cのソースコードを見てみよう

// インターフェイスファイル MyClass1.h

#import <Foundation/Foundation.h>

// クラス型の宣言
@interface MyClass1 : NSObject // 親クラスがない場合は、NSObject を継承する。
{
 // データメンバの宣言。
 int data_membar1;
 int data_member2;
}

 - (int)MyMethod1; // インスタンスメソッドの宣言。
 + (int)MyMethod2; // クラスメソッドの宣言。

@end

// 実装ファイル MyClass1.m

#import <MyClass1.h>

// クラス型の実装
@implementation MyClass1

 // -------------------
 // イニシャライザの実装　
 //
 // (このメソッドは、allocメソッドによって、
 // インスタンスが確保された直後に呼び出される。)
 //
 - (id)init
 {

 self = [super init]; // 親クラスのイニシャライザを呼び出す。
 // (戻り値は、インスタンス自身。)

 if (self) // 親クラスの初期化処理が失敗したら、nil が返される。
 {
 // メンバの初期化処理を、ここに書く。
 }

 return self; // そのまま返す。(これを子クラスが受け取る。)
 }

 // -------------------
 // デアロケータの実装　
 //
 // (このメソッドは、releaseメソッドによって、
 // インスタンスが解放される直前に呼び出される。)

 - (void)dealloc
 {
 // メンバの解放処理を、ここに書く。

 [super dealloc]; // 親クラスの解放処理を呼び出す。
 }

 // -------------------

 - (int)MyMethod1 // インスタンスメソッドの実装。
 {

 }

 // -------------------

 + (int)MyMethod2 // クラスメソッドの実装。
 {

 }

 // -------------------

@end

 // 実装ファイル main.m

#import <Foundation/Foundation.h>
#import <MyClass1.h>

int main()
{

 @autorereasepool
 {

 // インスタンスを生成し、イニシャライザを呼ぶ。
 id obj1 = [[MyClass1 alloc]init];

 [obj1 MyMethod1]; // インスタンスメソッドを呼ぶ。
 [MyClass1 MyMethod1]; // クラスメソッドを呼ぶ。

 }

 return 0;
}

メソッドの宣言

 【メソッド宣言の書式】

- (戻り値)メソッド名;

- (戻り値)メソッド名:(引数1のデータ型)引数1の名前;

- (戻り値)メソッド名:(引数1のデータ型)引数1の名前

 引数2のラベル:(引数2のデータ型)引数2の名前;

・1文字目が、「-」のものは、「インスタンスメソッド」。

・1文字目が、「+」のものは、「クラスメソッド」。

・引数1にはラベルがありませんが、

　これは、メソッド名の最後に付ける慣習があるからです。↓

 - (int)getValueByIndex:(int) index_
 Option:(int) option_;

・ラベルは、メソッドを呼び出す際にも書き添える必要があり、

　プログラマは、これを読むことによって、

　それぞれの引数の意味を確認することができるのです。

メソッドの呼び出し

 【 メソッドの呼び出しの書式 】

 [レシーバー メソッド名];

 [レシーバー メソッド名:引数1];

 [レシーバー メソッド名:引数1
 引数2のラベル:引数2];

・「レシーバー」というのは、インスタンスメソッドを

　　持っているクラスのインスタンスのことです。

・クラスメソッドの場合は、クラス名を指定します。

・また、レシーバーには、メソッド呼び出しを使うこともできます。↓

　(この場合は、戻り値がレシーバーになる。)

[[レシーバー　メソッド名] メソッド名];

・インスタンス自身へのポインタは、「self」です。↓

[self MyMethod1];

・親クラスへのポインタは、「super」です。↓

[super MyMethod1];

・このように、superを書いた場合は、

　親クラスのメソッドを、子クラス側でオーバライド (上書き) していても、

　親クラスのメソッドが呼び出されます。

インスタンスの確保と解放 (alloc release)

// インスタンスの確保と解放。↓

MyClass1* p_obj1 = [[MyClass1 alloc] init]; // 確保

[release p_obj1]; // 解放

 ・1行目の alloc メソッドは、
　「MyClass1」クラスのインスタンスを生成してから、
　「MyClass1」クラスの init メソッド (イニシャライザ) を呼んでいます。

・「イニシャライザ」は、インスタンス内のメンバの初期化を行うメソッドで、
　C++でいうところのコンストラクタの役割を果たします。

・2行目の release メソッドは、　
　「MyClass1」クラスの dealloc メソッド (デアロケータ) を呼んでいます。

・「デアロケータ」は、インスタンス内のメンバの解放を行うメソッドで、
　C++でいうところのデストラクタの役割を果たします。

【 インスタンス変数の正体 】

・「Objective-C」では、クラスのインスタンスは、
　すべて「スマートポインタ」になっています。

・「スマートポインタ」というのは、
　中にインスタンスへのポインタを入れておけば、
　使う人がいなくなった時点で、
　自動的に解放してくれるというアレです。

・Objective-Cのインスタンス変数は、
　インスタンス化された時点では、
　内部の参照カウンタが、1 になっています。

・そして、このインスタンス変数を利用している各インスタンスが
　ぞれぞれリリースして行き、カウントが 0 になると、
　内部で管理している実体が、自動的に解放されます。

・Objective-Cの参照カウントは、「レテインカウント」といい、
　retainCountメソッドを呼び出すことで、現在値を取得することができます。↓

 NSLog(@"p_obj1のレテインカウントは、%d です。", [p_obj1 retainCount]);

・レテインカウントは、retainメソッドを呼び出す度に、
　1ずつ カウントアップされていきます。↓

 [p_obj retain]; // これでカウントが +1 された。

 ・つまり、deallocメソッドが呼ばれるタイミングは、
　retainメソッドを呼び出した回数 + 1回 だけ、
　releaseメソッドが呼ばれた時です。

・ちなみに、「+1回」というのは、インスタンスの生成時に、
　allocメソッドによってカウントアップされたものです。

 ・retainメソッドを呼び出すタイミングとしては、
　別のクラスにも、p_obj を持たせるために、
　そのイニシャライザなどへ、 p_obj を渡す時です。

・そして、releaseメソッドを呼ぶタイミングは、
　そのクラスのメンバが解放される時で、
　これは、デアロケータの中などです。

・このライフサイクルを、C++風に書くと、
　おおよそ、以下のようになります。↓
　

 // -------------------------
// 他のクラスに、メンバとして持たせるクラスの宣言。↓

class Class1{ /* 中略 */ };

// -------------------------
// Class1のインスタンスを生成するクラスの宣言↓

class Class2
{
 Class1* p_obj1;

 Class2()
 {
 p_obj1 = new Class1();
 // 参照カウントが 1 になる。この1は、作成者自身の持ち分です。)
 }

 ~Class2()
 {
 // delete p_obj1; とはせず、参照カウントを減らす。(release)
 }
};

// -------------------------
// さらにそれを借り受けて共有するクラスの宣言。↓

 class Class3
{
 Class1* p_obj1; // 他のクラスが生成したインスタンス。

 Class3(Class1* p_obj_)
 {
 p_obj1 = p_obj_;
 // この時に、参照カウントを増やす。(retain)
 }

 ~Class3()
 {
 // ここで参照カウントを減らす。(release)
 }
};

自動解放プール (autorelease)

 #import <Foundation/Foundation.h>

int main()
{
 // 自動解放プールを生成する。
 NSAutoreleasePool* p_pool1 = [[NSAutoreleasePool alloc] init];

 MyClass1* p_obj1 = [[MyClass1 alloc] init]; // インスタンスを生成する。　

 [p_obj1 autorelease]; // 自動解放プールに登録しておく。
 // (※ 最後に生成されたプールに登録される。)

 [p_pool1 release]; // 自動解放プールを解放する。 (p_obj1 も 解放される)

 return 0;
}

・インスタンス「p_obj1」を、他のクラスと共有する場合は、
　受け渡しの際に、retain メソッドを呼び出して、
　レテインカウントをカウントアップさせないといけません。

・Foundationフレームワークのメソッドでも、
 autorelease メソッドが呼ばれたインスタンスが返されるようになっています。

　　(※ copy メソッドや、mutableCopy メソッドで複製されたインスタンスは、
 　　 autorelease メソッドが呼ばれていません。)

・プールを生成するのは面倒なので、ふつうは、次のように書きます。↓

#import <Foundation/Foundation.h>

int main()
{

 @autoreleasepool
 {
 // ここにコードを書く。
 }

 return 0;

}

ガベージコレクション (finalize drain)

 ・OSX10.5以降 (Objective-C 2.0) からは、
　「ガベージコレクション」が導入されました。

・Java や C# では、インスタンスの解放は、
　ガベージコレクションによって、自動的に行われます。

・つまり、delete演算子や releaseメソッドなどを呼ぶ必要がないのです。

・ガベージコレクションを有効にしている場合は、
　release メソッド や、autorelease メソッドを呼び出しても、
　何もされず、デアロケータも呼ばれません。

・代わりに、解放時には、finalize メソッドが呼ばれます。

 (※ finalize メソッドは、いつ呼ばれるか不明なので、
 順序や、タイミングに左右されるような処理を書いてはいけません。

　　※ また、処理は、スレッドセーフである必要があります。)

・finalize メソッドは、以下のように実装します。↓

- (void)finalize
{
 // このクラスのメンバを解放する。

 [super finalize]; // 最後に、親クラスのfinalizeメソッドを呼ぶ。

}

・ガベージコレクションを有効にしてビルドしたアプリでは、

　自動解放プールを解放する時は、drainメソッドを呼びます。↓

[p_pool1 drain]; // 自動解放プールを解放する。 (p_obj1 も 解放される。)

・drainメソッドは、ガベージコレクションが無効である場合には、

　releaseメソッドと同じ処理を行い、

　有効である場合には、不要なインスタンスを探して、自動的に解放します。

・Cocoaアプリケーションでは、ガベージコレクションは有効になっていますが、

　コマンドラインアプリケーションで有効にするには、次のように書く必要があります。↓

#import <Foundation/Foundation.h>

int main()
{

 NSGarbageCollector* p_gc = [NSGarbageCollector defaultCollector];

 [p_gc enable]; // GCを有効にする。

 // 中略

 MyClass1* p_obj1 = [[MyClass1 alloc]init]; // インスタンスを生成する。

 p_obj1 = nil; // nilを代入すると、もう使われなくなったとみなされる。

 [p_gc collectIfNeeded]; // 必要なら解放する。(重くなりそうな時に呼ぶ。)

 [p_gc collectExhaustively]; // 確実にすべて解放する。(アプリの終了直前に呼ぶ。)

 return 0;

}

・p_obj1 は、collectIfNeededメソッドが呼ばれた時点で解放されます。

ブロック構文

// クラスの実装

@implementatin MyClass1

- (void)MyMethod1
{
 int (^tasizan)(int,int); // ブロック構文変数を定義する。

 // ブロック構文変数を実装する。

 tasizan = ^(int v1, int v2)
 {
 return v1+v2;
 };

 // コマンドラインに、戻り値を出力する。

 NSLog(@"足し算の答えは、%d です。", tasizan);
}

@end

 ・さて、次のメソッドでは、引数がブロック構文になっています。↓

- (void)OutputAnswer : (int (^formula)(int,int)) formula_
 {
 // コマンドラインに、戻り値を出力する。

 NSLog(@"数式の答えは、%d です。", formula_);}

}

・このメソッドを呼び出す場合は、こうなります。↓

#import "Foundation/Foundation.h"

int main()
{

 MyClass1* p_obj1 = [[MyClass1 alloc]init]: // インスタンスを生成する。

 // 計算式を入力し、その結果を出力する、というメソッドを呼ぶ。

 [p_obj1 OutputAnswer:^(int v1, int v2){return v1+v2;}];

 [p_obj1 release]; // インスタンスを解放する。

 return 0;
}

プロパティ

・C#には、「プロパティ」という便利なものがありますが、

　Objective-Cのプロパティは、少し違っていて、

　C++のアクセッサを自動的に実装してくれるものです。↓

 // ヘッダファイル側 クラスの宣言

@interface MyClass1
{
 int data_member1; // データメンバの宣言。

}

 @property int MyProperty1; // プロパティの宣言。

@end

// ソースファイル側 クラスの実装

@implementation MyClass1

 @synthesize MyProperty1 = data_member1; // プロパティの実装は書かない。

@end

・コンパイラは、上記のソースコードに基づいて、

　下記のGetterメソッドとSetterメソッドを実装してくれます。↓

- (int)MyProperty1;
- (void)setMyProperty1(int)value;

・これらの実装を、C/C++ で書くと、こんな感じになります。↓

・これらの実装を、C/C++ で書くと、こんな感じになります。↓

 int MyProperty1(void) const { return data_member1; }
void setMyProperty1(int value) { data_member1 = value; }

・それでは、このプロパティを使ってみましょう。↓

#import<Foundation/Foundation.h>

int main()
{

 MyClass1* p_obj1 = [[MyClass1 alloc]init]; // インスタンスを生成する。

 int v1= [p_obj1 MyProperty1]; // Getterメソッドを呼び出す。

 [p_obj1 setMyProperty1:9999]; // Setterメソッドを呼び出す。

 return 0;

}

 ・アクセッサは、片方、または両方を、独自に実装することもできます。

 ・それから、プロパティには、「属性」を付けることができ、

　これによって、実装の内容が変化します。↓

 getter=Getterの名前

 setter=Setterの名前
readonly ... 読み取り専用。

readwrite ... 読み書き可能。

nonatomic ... 複数スレッド間での同期処理を行わない。(ロック処理を行わない)

・値の持ち方についての属性は、次のいずれかを指定します。↓

assign ... 単純に、値を代入するだけ。基本データ型向け。(デフォルトではこの動作。)

retain ... インスタンスをセットし直す際に、

　　　　　　　元のインスタンスのrereaseメソッドを呼び、

　　　　　　　渡されたインスタンスのretainメソッドを呼んで、

　　　　　　　インスタンスをセットする。

copy ... インスタンスをセットし直す際に、

　　　　　　　元のインスタンスのrereaseメソッドを呼び、

　　　　　　　渡されたインスタンスのcopyメソッドを呼んで、

　　　　　　　作成されたコピーをセットする。

・プロパティ属性は、次のようにして指定します。↓

 @property(readonly,retain) int MyProperty1; // プロパティの宣言。

カテゴリ

・「カテゴリ」は、同じ種類のメソッドをグループ化して

　わかりやすくまとめるためのものです。

・例えば、次のようなシンプルなクラスがあるとします。↓

 // 画像を表示するクラスの宣言 (Jpegのみ対応) ... MyImage.h
@interface MyImage
{
}
- (int)LoadJpeg(NNString*) path_;
- (int)SaveJpeg(NNString*) path_;
@end

 // 画像を表示するクラスの実装 (Jpegのみ対応) ... MyImage.mm
@implimentation MyImage
- (int)LoadJpeg(NNString*) path_ {}
- (int)SaveJpeg(NNString*) path_ {}
@end

・このクラスでは、今のところ、Jpeg画像しか表示できませんが、

　近いうちに、Gifなど、その他のファイル形式の画像も表示させたい、

　と考えているとします。

・そういう場合には、このクラスを継承したり、包含したりして、

　機能を拡張していけばいいのですが、いまひとつ柔軟性に欠けることがあり、

　そんな場合には、このカテゴリを使うという手もあります。↓

// 画像を表示するカテゴリの宣言 (Gif対応) ... MyImageClass+Gif.h

@interface MyImage(Gif)
{
}
- (int)LoadGif(NNString*) path_;
- (int)SaveGif(NNString*) path_;
@end

// 画像を表示するカテゴリの実装 (Gifのみ対応) ... MyImage+Gif.mm
@implimentation MyImage(Gif)
- (int)LoadGif(NNString*) path_ {}
- (int)SaveGif(NNString*) path_ {}
@end

・クラス名は、「MyImage」クラスと同じですが、↑

　クラス名の直後に、カッコで囲んだ中に、

　カテゴリ名が書きそえてあります。

・カテゴリで追加できるのは、メソッドだけです。

【 カテゴリの注意点 】

　・インスタンス変数を宣言できない。

　・プロパティも宣言できない。

　・元クラスのプライベートメソッドと同じ名前を再定義してはいけない。

・カテゴリで追加されたメソッドは、元クラスのメソッドと同じように

　元クラスのインスタンスから呼び出すことができます。↓

#import <Foundation/Foundation.h>
#import <MyImage.h>
#import <MyImage+Gif.h>

int main()
{

 MyImage* p_img1 = [[MyImage alloc] init]; // 元クラスのインスタンスを生成する。

 [p_img1 LoadGif:@"c:¥ryuenbu.gif"]; // Gifカテゴリのメソッドが呼び出せる。

 [p_img1 release]; // インスタンスを解放する。

 return 0;
}

 ・何か使いたいカテゴリがある場合は、元クラスのヘッダファイルと一緒に、

　そのカテゴリのヘッダファイルをインクルードしておきます。

・すると、そのカテゴリに含まれるメソッドを呼び出すことができます。

・カテゴリは、NSString など、システムフレームワークのクラスに

　機能を追加して使う場合などで、よく使われているようです。

クラスエクステンション

・「クラスエクステンション」は、名前のないカテゴリのようなものです。

・ソースファイルの外には公開されないため、宣言は書きません。↓

// MyImage.h

 // 画像を表示するクラスの宣言 (Jpegのみ対応)
@interface MyImage
{
}
- (int)LoadJpeg(NNString*) path_;
- (int)SaveJpeg(NNString*) path_;
@end

 // MyImage.mm

// 画像を表示するクラスエクステンションの宣言 (Gif対応)
@implimentation MyImage()
- (int)LoadGif(NNString*) path_ {}
- (int)SaveGif(NNString*) path_ {}
@end

 // 画像を表示するクラスの実装 (Jpegのみ対応)
@implimentation MyImage
- (int)LoadJpeg(NNString*) path_ {}
- (int)SaveJpeg(NNString*) path_ {}
@end

・カテゴリでは、システムフレームワークのクラスを

　機能拡張することができましたが、

　クラスエクステンションではできません。

 ・その代わりに、インスタンス変数やプロパティを

　　メンバとして宣言することができます。

プロトコル

・「プロトコル」は、C/C++でいうところの

　「インターフェイス」のようなものです。(__interface)

・プロトコルの宣言では、

　抽象クラスのように、メソッドの宣言だけを行い、

　クラス側で実装をさせます。↓

 // プロトコルの宣言。　

@protocol MyProtocol1
// メソッドの宣言。

- (int)Method1;
- (int)Method2;
@end

・さらに、別のプロトコルのメソッド宣言を含めることもでき、

　その場合は、<>の中に、含めたいプロトコル名を、カンマで区切って書きます。↓

 // プロトコルの宣言。　

@protocol MyProtocol3< MyProtocol1, MyProtocol2 >
 // 中略

@end

 // MyProtocol1 を実装するクラスの宣言。↓

@interface MyClass1<MyProtocol1>
 {
}
@end

 // MyProtocol1 を実装するクラスの実装。↓

@implementation MyClass1<MyProtocol1>
// メソッドの実装。

- (int)Method1{}
- (int)Method2{}
@end

・複数のプロトコルを実装する場合は、

　カンマで区切って書きます。

・カテゴリで実装する場合は、次のように書きます。↓

 // MyProtocol1 を実装するカテゴリの宣言。↓

@interface MyClass1(Category1)<MyProtocol1>
 {
}
@end

・実装側にも、同じように書きます。

・使い方は、C/C++のインターフェイスと同じです。↓

#import <Foundation/Foundation.h>

int main()
{

 // MySoundWAVクラスのインスタンスを生成し、

 // そのアドレスを、MySound プロトコルのポインタに代入する。

 //
 MySound* p_snd1 = [[MySoundWAV alloc]init];
 [p_snd1 play]; // WAVEファイルが再生される。

 [p_snd1 release]; // インスタンスを解放する。

 // MySoundMP3クラスのインスタンスを生成し、

 // そのアドレスを、MySound プロトコルのポインタに代入する。

 //
 p_snd1 = [[MySoundMP3 alloc]init];
 [p_snd1 play]; // MP3ファイルが再生される。

 [p_snd1 release]; // インスタンスを解放する。

 return 0;
}

・MySoundWAVクラスと、MySoundMP3クラスは、

　どちらも同じMySoundプロトコルを実装していますが、

　同じ名前のplayメソッドでも、実装が異なっており、

　ファイル形式に適した再生処理を実行することができます。

プリプロセッサ (#import)

・Objective-Cでは、「#include」の代わりに

　「#import」を使います。

・#import は、同じヘッダファイルを一度しか読み込まないため、

　インクルードガードをする必要がありません。

例外処理 (@try @catch @finally)

@try
{
 // 例外が発生しそうな処理を、ここに書く。

}
@catch(NSException* ex)
{
 // 例外が発生した時の処理を、ここに書く。

}
@finally
{
 // 例外の有無に関係なく、必ず実行したい処理を、ここに書く。

}

・例外をスローするには、raiseメソッドを呼びます。↓

[[NSException exceptionWithName:@"例外名"
 reason:@"例外の原因"
 userInfo:@"説明"]raise];

id型

・id 型の変数は、あらゆるデータ型の値を代入することができます。

// Class1.h

// クラス1の宣言

@interface Class1
// 中略

- (void) output1();
@end

// Class2.h

// クラス2の宣言

@interface Class2
// 中略

- (void) output2();
@end

// Class1.m

#import <Foundation/Foundation.h>
#import <Class1.h>

// クラス1の実装

@implementation Class1
// 中略

- (void) output1() { NSLog(@"Class1"); }
@end

// Class2.m

#import <Foundation/Foundation.h>
#import <Class2.h>

// クラス2の実装

@implementation Class2
// 中略

- (void) output2() { NSLog(@"Class2"); }
@end

// main.m

#import <Foundation/Foundation.h>
#import <Class1.h>
#import <Class2.h>

int main()
{

 id obj1 = [[Class1 alloc]init]; // インスタンスを生成する。

 id obj2 = [[Class2 alloc]init];// インスタンスを生成する。

 [obj1 output1]; // 「Class1」と出力される。

 [obj2 output2]; // 「Class2」と出力される。

 [obj1 release]; // インスタンスを解放する。

 [obj2 release]; // インスタンスを解放する。

 return 0;
}

・ポインタ変数に代入されるアドレスのデータ型が定まっていない場合は、

　C/C++では、void* 型のポインタを使ったり、

　または、親クラスや、インターフェイスのポインタを使って

　インスタンスのアドレスを受け取っていました。

・void*型のポインタに代入した場合は、代入されたインスタンスが、

　どのデータ型なのかといった情報が記録されていないため、

　そのメソッドを呼び出すことができません。

　

・その点、親クラスや、インターフェイスのポインタであれば、

　メソッドを呼び出すことはできますが、　

　対応していないデータ型のアドレスを代入することはできません。

・id型の変数では、いずれの心配もありません。

・加えて、これはオブジェクト型であるため、

　release メソッドや autorelease メソッドなどが使えます。

文字列リテラル (NSString)

// ・文字列リテラルクラスのポインタを、

// 　文字列リテラルのアドレスで初期化している。↓

NSString* p_s1 = @"あいうえお";

// ・このように、リテラルの頭に@を付けると、

// NSStringクラスのインスタンスとみなされる。

 ・全角文字が使えるのは、ソースファイルのエンコードがUTF-8の時だけで、

　それ以外の場合は、ASCIIのみとなります。

・NSStringクラスは、リテラル(定数)専用ですから、

　文字列を部分的に修正することはできません。

・修正したい場合は、派生クラスの NSMutableStringクラスを使います。↓

 // 文字列変数を、文字列リテラルで初期化する。

NSMutableString* p_ms1 = [NSMutableString stringWithString:@"コアラ"];

// 文字列バッファを作成する。(バッファサイズは、引数で指定する。)
NSMutableString* p_ms2 = [NSMutableString stringWithCapacity:24];

// 文字列変数を、書式文字列で初期化する。

NSMutableString* p_ms3
 = [NSMutableString initWithFormat:@"v1=%d, v2=%d", v1, v2];

NSLog(@"%@", p_ms3); // コマンドラインへ出力する。

 // 文字列リテラルを、文字列リテラルで初期化する。(UTF-8エンコーディング)
NSString* p_s1 = [NSString stringWithUTF8String:@"コアラ"];

 NSString* p_s1 = @"あいうえお"; // 文字列リテラルを宣言する。

// 文字列変数に変換する。

NSMutableString* p_ms1 = [[p_s1 mutableCopy] autorelease];

// 逆に、文字列リテラルに変換する。

NSString* p_s2 = [NSString stringWithString:p_ms1];

ポインタ配列

#import <Foundation/Foundation.h>

int main()
{
 // -------------------
 // ポインタ配列を作成する。

 // 弱い参照関係のポインタ配列を作成する。

 NSPointerArray* p_a1 =
 [NSPointerArray pointerArrayWithWeakObjects];

 // 強い参照関係のポインタ配列を作成する。(nil を代入できる。)
 NSPointerArray* p_a2 =
 [NSPointerArray pointerArrayWithStrongObjects];

 // -------------------
 // 要素を追加する。

 // 要素となるインスタンスを生成する。
 NSString* p_item1 = [NSString stringWithString:@"りんご"];
 NSString* p_item2 = [NSString stringWithString:@"みかん"];

 // ポインタ配列に、そのポインタを追加する。

 [p_a1 addPointer:p_item1]; // 0:りんご

 [p_a1 addPointer:p_item2]; // 0:りんご 1:みかん
 // (要素は、配列の末尾に追加される。この場合は、要素0、1。)

 // -------------------
 // 要素を挿入する。

 NSString* p_item3 = [NSString stringWithString:@"バナナ"];

 [p_a1 insertPointer:p_item3
 atIndex:0]; // 0番目に挿入する。(0:バナナ 1:りんご 2:みかん)
 // -------------------
 // 要素を削除する。

 [p_a1 removePointerAtIndex:0]; // 0番目を削除する。

 [p_a1 compact]; // nil 要素を削除する。

 // -------------------
 // 要素を置き換える。

 [p_a2 replacePointerAtIndex:0
 withPointer:nil]; // 0番目を、nilに置換する。

 // -------------------

 // 要素を取得する。

 NSString* p_item3 = [p_a1 pointerAtIndex:0]; // 0番目を取得する。

 // ちなみに、要素の列挙は、次のようにして foreach文 風に行える。↓

 NSString* p_i = nil;
 for (p_i in p_a1)
 {
 NSLog(@"%@", p_i); // コマンドラインに出力する。

 }
 // ・NSFastEnumerationプロトコルを実装しているため、高速に列挙できる。

 // (※ nil が格納されていることもあることに注意して、読み取って下さい。)
 // -------------------
 // 通常の配列を作成する。

 NSArray* p_a3= [p_a1 allObjects]; // 配列を作成する。

 // (ポインタ配列が弱い参照関係のものでも、強い参照関係の配列が作成される。)
 // (※オブジェクトへのポインタ以外が格納されている場合は、作成できない。)
 // -------------------
 // 要素数を取得する。

 int item_count = [p_a1 count]; // 要素数を取得する。

 // -------------------

 return 0;
}

ハッシュテーブル

#import <Foundation/Foundation.h>

int main()
{
 // -------------------
 // ポインタ配列を作成する。

 // 弱い参照関係のポインタ配列を作成する。

 NSPointerArray* p_h1 =
 [NSPointerArray pointerArrayWithWeakObjects];

 // -------------------
 // 要素を追加する。

 // 要素となるインスタンスを生成する。
 NSString* p_item1 = [NSString stringWithString:@"りんご"];
 NSString* p_item2 = [NSString stringWithString:@"みかん"];

 // ポインタ配列に、そのポインタを追加する。

 [p_h1 addObject:p_item1];
 [p_h1 addObject:p_item2];

 // -------------------
 // 要素を削除する。

 [p_h1 removeObject:@"みかん"]; // 「みかん」を削除する。

 [p_h1 removeAllObjects]; // すべての要素を削除する。

 // -------------------
 // 要素数を取得する。

 int item_count = [p_h1 count]; // 要素数を取得する。

 // -------------------
 // 要素が存在するかを判定する。

 BOOL is_entry = [p_h1 containsObject:@"みかん"]; // 要素数を取得する。

 // -------------------

 // ハッシュテーブルを結合する。

 NSPointerArray* p_h2 =
 [NSPointerArray pointerArrayWithWeakObjects];

 [p_h1 unionHashTable:p_h2]; // p_h2 を削除する。

 // -------------------
 // 別のハッシュテーブルに含まれる要素を削除する。

 [p_h1 minusHashTable:p_h2]; // p_h2 の要素を削除する。

 // -------------------
 // 要素を列挙する。

 for (NSString* p_i in p_h1)
 {
 NSLog(@"%@", p_i); // コマンドラインに出力する。

 }
 // ・NSFastEnumerationプロトコルを実装しているため、高速に列挙できる。

 // -------------------
 // すべての要素をコピーする。

 NSArray* p_a1 = [p_h1 allObjects]; // 配列にコピーする。

 NSSet* p_s1 = [p_h1 setRepresentation]; // セットにコピーする。

 // -------------------
 return 0;
}

マップテーブル

#import <Foundation/Foundation.h>

int main()
{
 // -------------------
 // ポインタ配列を作成する。

 // 弱い参照関係のポインタ配列を作成する。

 NSMapTable* p_m1 =
 [NSMapTable mapTableWithStringToWithWeakObjects];

 // -------------------
 // 要素を追加する。

 // 要素となるインスタンスを生成する。
 NSString* p_item1 = [NSString stringWithString:@"りんご"];
 NSString* p_item2 = [NSString stringWithString:@"みかん"];

 // キー文字列を添えて追加する。

 [p_m1 setObject:p_item1
 forKey:@"青森"];

 [p_m1 setObject:p_item2
 forKey:@"和歌山"];

 // (登録済みのキーを指定した場合は、上書きされる。)

 // -------------------
 // 要素を削除する。

 [p_m1 removeObjectForKey:@"和歌山"]; // 「みかん」を削除する。

 [p_m1 removeAllObjects]; // すべての要素を削除する。

 // -------------------
 // 要素数を取得する。

 int item_count = [p_m1 count]; // 要素数を取得する。

 // -------------------

 // キーを指定して、要素を取得する。

 NSString* p_item4= [p_m1 objectForKey:@"青森"]; // 要素を取得する。

 // -------------------
 // キー (+ 要素) を列挙する。

 NSEnumerator* p_keys1 = [p_m1 keyEnumerator]; //

 for (NSString* p_key in p_keys1)
 {
 // コマンドラインに出力する。

 NSLog(@" key=%@ : value=%@ ",
 p_key, [p_m1 objectForKey:p_key]);
 }
 // -------------------
 // 要素を列挙する。

 NSEnumerator* p_objs1 = [p_m1 objectEnumerator];

 for (NSString* p_obj in p_objs1)
 {
 // コマンドラインに出力する。

 NSLog(@"value=%@ ",
 p_key, [p_m1 objectForKey:p_obj]);
 }

 // -------------------
 // ディクショナリーを作成する。(強い参照関係となるため、nilは許容されない。)

 NSDictionary* p_d1= [p_m1 dictionaryRepresentation]; // 作成する。

 // -------------------

 return 0;
}

